SEARCH FOR DARK MATTER USING MONO-HIGGS EVENTS IN THE FOUR LEPTON FINAL STATE AT CMS

By: Jairrin Dickens (Florida A and M University, USA)
Supervisor(s): Dr.Pushpa Bhat (Fermilab, USA) and
Dr.Nicola De Filippis (Bari, Italy)

- Dark matter seems to outweigh visible matter, making up about 27% of the universe.
- We can only detect dark matter from its gravitational effects.
- If such particles interact non-gravitationally with standard model particles detecting it through high-energy collisions at particle accelerators is one of the most promising avenues towards identifying the specific nature of its detailed interactions.

- Dark matter particles could be produced at the Large Hadron Collider, but would escape detection being stable and weakly interacting.
- The standard model Higgs boson can provide an additional probe beyond the Standard Model into the dark matter sector.
- Experimentally, these "mono-Higgs" events are characterized by the presence of a Higgs boson and non negligible missing transverse momentum due to the undetected dark matter particles.

- In order to plot and analyze the data, background, and signal distributions ROOT version 6.06/01 was used.
- ROOT is an object-oriented program and library developed by CERN. It is mainly written in C++ but integrated with other languages such as Python and R.

- TNtuples with various calculated variables were provided to work with.
- A TNutple is a TTree restricted to a list of float variables.
- A TTree consists of a list of independent branches, and each branch has its own definition and list of buffers.

- The study focused on the decay of the standard model-like Higgs boson to two Z bosons both decaying to charged leptons. $(H \rightarrow ZZ \rightarrow 41)$
- The TNtuples were separated into the three different decay channels of the leptons.
 - Two electrons two muons (2e2mu)
 - Four electrons (4e)
 - Four muons (4mu)
- 2015 data was collected from CMS for this study had a luminosity of 2.8 fb⁻¹

Background processes

```
gg \rightarrow ttH \rightarrow ttZZ \rightarrow 41+X
tt \rightarrow 212v2b
qq \rightarrow Hqq \rightarrow ZZqq \rightarrow 4lqq
WJets →lv
qq \rightarrow W^-H \rightarrow W^-ZZ \rightarrow 4l + X
qq \rightarrow W^+H \rightarrow W^+ZZ \rightarrow 41+X
WW \rightarrow 212v
WZ \rightarrow 31v
qq \rightarrow ZH \rightarrow ZZZ \rightarrow 41+X
Z \rightarrow ll, H \rightarrow 2lvv, l=e, \mu
qq \rightarrow ZZ \rightarrow 41
Z \rightarrow ll + jets
 gg \rightarrow H \rightarrow ZZ \rightarrow 2e2mu
gg \rightarrow H \rightarrow ZZ \rightarrow 2e2tau
gg \rightarrow H \rightarrow ZZ \rightarrow 2mu2tau
gg \rightarrow H \rightarrow ZZ \rightarrow 4e
gg \rightarrow H \rightarrow ZZ \rightarrow 4mu
gg \rightarrow H \rightarrow ZZ \rightarrow 4tau
```

Signal: Two Higgs Doublet Model (2HDM)

SIMPLIFIED MODEL

Z' DECAYS TO A HIGGS PLUS AN INTERMEDIATE STATE WHICH DECAYS TO A DARK MATTER PAIR

- A standard model state decaying to dark matter is highly constrained.
- However dark matter-standard model particle interactions mediated by a pseudoscalar particle (Z') are possible, evading constraints from direct detection experiments.

- The models used in my study differed in the mass of the Z' with A⁰ set to 300GeV.
- Z' = 600GeV, 800GeV, 1000GeV, 1200GeV, 1400GeV, 1700GeV, 2000GeV, 2500GeV

RESULTS

Missing E, 2e2mu

Backgrounds and signal models are weighted to 2.8 fb⁻¹

Number of events(data) per channel 2e2mu=70

4e=20

4mu=49

The Missing E_T of the data is negligible and explained by the Standard Model

Missing E_T events at 2.8 fb⁻¹

	Signal			
	MZ'=600GeV	MZ'=800GeV	MZ'=1000Ge V	Background
$ME_T > 150$	0.02148	0.01108	0.008606	0.40146
$ME_T > 250$	0.00171	0.00909	0.008158	0.06187

Transverse momentum 2e2mu

Events (data) do not extend into the range modeled by the signal models

There is a significant amount of the signal after Δφ>2 radians while the background has an even distribution

Making a cut at Δφ>2 radians will allow for significant amount of background rejection while at the same time allowing for a significant amount of the signal to remain

Conclusion

- $lacktriang There is no significant missing <math>E_T$ in the 2015 data
- The data is well modeled by the standard model background
- We need a lot more data to have significant sensitivity in this channel
- Advanced Multivariate Analysis should improve signal/background separation and sensitivity

Acknowledgments

- Supervisors:
 - Dr. Pushpa Bhat
 - Dr. Nicola De Filippis
- My Mentors
 - Mr. Gustavo Cancelo
 - Mr. David W. Peterson
- Ms. Sandra Charles
- Ms. Judy Nunez
- Dr. Elliott Mcrory
- Dr. Leonard Spiegel
- Dr. Harrison Prosper
- My fellow SIST interns
- And my carpool

Questions?

Higgs Boson May Be Key to Understanding Dark Matter

The key to the universe, and our ticket to guest-stardom on "The Big Bang Theory!"